Introduction
   InetCAS
     InetMaple
     InetReduce
   InetApplication
     InetMatlab
   Mathematics
     Combinatorics
       - numbpart
       - multipart
       - arithinva
       - rbf

1. reduce@trinitas.mju.ac.kr ÀÇ ¸ñÀû     [ English ]
À§ ÁÖ¼Ò·Î µµÂøÇÑ ÀüÀÚ¸ÞÀÏ º»¹®ÀÇ  
     input:                °ú      

     end input:   
»çÀÌ¿¡ ÀÖ´Â Reduce ¸í·É¾îµéÀ» ÀÚµ¿ÀûÀ¸·Î ½ÇÇàÇÑ ÈÄ ±× °á°ú¸¦ ÀüÀÚ¸ÞÀÏ·Î º¸³» ÁÜ.  

2. ¼Ò°³
InetCompu ¼­ºñ½º¸¦ ÅëÇÏ¿© Computer Algebra System (CAS) ÀÎ Reduce ¸¦ »ç¿ëÇÒ ¼ö ÀÖ´Ù.  ƯÈ÷, ¹ÌÀûºÐÇÐ, ¼±Çü´ë¼öÇÐ ¹× °øÇмöÇÐ µîÀÇ ¿©·¯ ºÐ¾ß¿¡ °ÉÃÄ  ´Ù¾çÇÑ ¼öÄ¡Çؼ®Àû °è»ê ¹× ¹ÌºÐ°ú ÀûºÐ µîÀÇ °è»ê¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ´Â °íµîÇлý, ´ëÇлý ¹× ´ëÇпø»ýµé¿¡°Ô »ó´çÇÑ µµ¿òÀÌ µÉ °ÍÀÌ´Ù.  

3. Notes
3-1. ¿¹¸¦ µé¾î, ReduceÀÇ ±×·¡ÇȽº °ü·Ã ¸í·É¾îÀÇ °æ¿ì¿¡ À־, ¾ÆÁ÷Àº ÇØ»ó·ÂÀÌ ¶Ù¾î³­ °á°ú¸¦ º¼ ¼ö ¾øÀ½. (ÇâÈÄ ±â´Éº¸°­ ÇÒ °èȹÀÓ).
3-2. Á¢¼öµÈ ÀüÀÚ¸ÞÀÏÀ» ¿¡·¯¾øÀÌ Ã³¸®Çϱâ À§ÇÏ¿©, Microsoft »çÀÇ Outlook Express¿¡¼­ New mail > Alt+O > Alt+X (with No Encryption) À» »ç¿ëÇÏ¿© reduce@trinitas.mju.ac.kr ·Î ´ÙÀ½ÀÇ Á¦ 4Ç×ÀÇ ¼³¸í¿¡ µû¶ó ÀÛ¼ºÇÑ ÀüÀÚ¸ÞÀÏÀ» º¸³¾ °ÍÀ» ±ÇÀåÇÑ´Ù. ±×¸®°í, ´ÙÀ½ÀÇ Á¦ 3-3Àý ¹× Á¦ 3-4ÀýÀ» Ãß°¡·Î ÀÐÀ» °ÍÀ» Àû±Ø ±ÇÀåÇÑ´Ù.

3-3. (Important) ¾Æ·¡ÀÇ ¿¹Á¦¿¡¼­ º¸ÀÎ ¹Ù¿Í °°ÀÌ, ¿¹¸¦ µé¾î, Reduce ¸í·É¾î·Î½á § ÇÁ·Î±×·¥¿¡ ÀÖ¾î "<<" ¿Í ">>" ÀÇ Æ¯¼ö ¹®ÀÚ ´ë½Å¿¡ °¢°¢ "begin" °ú "end" À» »ç¿ëÇÒ °ÍÀ» °­·ÂÇÏ°Ô ±ÇÀåÇÕ´Ï´Ù. ÀÌ°ÍÀº ¿©·¯ºÐµéÀÌ »ç¿ëÇÏ´Â Web±â¹Ý ÀüÀÚ¸ÞÀÏ ¼­¹öÃø¿¡¼­ ´ç½ÅÀÇ ÀüÀÚ¸ÞÀÏÀÇ º»¹®¿¡ ´ëÇÏ¿© Áö³ªÄ£ ¼öÁØÀ¸·Î ÇÊÅ͸µ ÀÛ¾÷À» ¼öÇàÇÏ´Â °úÁ¤¿¡¼­ ¹ß»ýÇÒ ¼ö ÀÖ´Â À̵é Ư¼ö¹®ÀÚ¿¡ ´ëÇÑ À߸øµÈ ó¸®ÀÇ ¹®Á¦¸¦ ±Ùº»ÀûÀ¸·Î ÇÇÇϱâ À§ÇÔÀÔ´Ï´Ù. ´ÙÀ½ÀÇ Æ¯¼ö ¹®Àڵ鿡 ´ëÇÏ¿©¼­µµ ÀûÀýÇÑ Á¶Ä¡¸¦ ÇÏ¿© ÁÙ °ÍÀ» Àû±Ø ±Ç°íÇÕ´Ï´Ù: Áï, "<=" ´ë½Å¿¡ "leq" À», ">=" ´ë½Å¿¡ "geq" À», "=" ´ë½Å¿¡ "eq" À», ">" ´ë½Å¿¡ "greaterp" À», ±×¸®°í "<" ´ë½Å¿¡ "lessp" À» »ç¿ëÇÒ °ÍÀ» ±Ç°íÇÕ´Ï´Ù. 
3-4. (Warning)
À§ÀÇ Æ¯¼ö ¹®ÀÚ¸¦ ÀüÇô »ç¿ëÇÏÁö ¾Ê´Â °æ¿ì¿¡ À־µµ, °øÂ¥·Î Á¦°øµÇ´Â Web±â¹Ý ÀüÀÚ¸ÞÀÏ ¼­¹öÃøÀÇ ¿î¿µÀÚ°¡ »ó¾÷Àû ±¤°í¹®À» »ç¿ëÀÚ ÀüÀÚ¸ÞÀÏÀÇ Áß°£¿¡ °­Á¦·Î »ðÀÔÇÏ´Â °æ¿ì°¡ ÀÖÀ¸¸ç ÀÌ·¯ÇÑ garbage¸¦ Æ÷ÇÔÇÑ ÀüÀÚ¸ÞÀÏÀÌ Á¢¼öµÉ °æ¿ì´Â InetCompu ¼­ºñ½ºÀÇ Á¦°ø¿¡ ½É°¢ÇÑ ¾î·Á¿òÀÌ ÀÖÀ» ¼ö ÀÖ½À´Ï´Ù. ±×·¯¹Ç·Î, °¡´ÉÇÑ ÇÑ Microsoft »çÀÇ Outlook Express¿¡¼­ New mail > Alt+O > Alt+X (with No Encryption) À» »ç¿ëÇÏ¿© reduce@trinitas.mju.ac.kr ·Î ÀüÀÚ¸ÞÀÏÀ» º¸³¾ °ÍÀ» ±ÇÀåÇÕ´Ï´Ù.  

4. ÀüÀÚ¸ÞÀÏÀ» º¸³»´Â ¹æ¹ý: ¿¹¸¦ µé¾î, ÀüÀÚ¸ÞÀÏÀÇ º»¹®ÀÌ ¹ÌÀûºÐÇп¡¼­ ´Ù·ç´Â ¶ó±×¶ûÁÖÀÇ ½Â¼ö¹ý¿¡ µû¶ó ÁÖ¾îÁø ´Ùº¯ ´ÙÇ×ÇÔ¼ö f ¿Í ´ÙÇ×½Ä Á¦¾àÁ¶°Ç g =0 ÇÏ¿¡¼­ f °¡ ÀÓ°èÁ¡¿¡¼­ °®°Ô µÇ´Â ÃÖ´ë°ª ȤÀº ÃÖ¼Ò°ªÀ» ±¸ÇÏ´Â ¾Æ·¡ÀÇ ÇÁ·Î±×·¥À¸·Î ÀÌ·ç¾îÁø plain-text ¾ç½ÄÀÇ ÀüÀÚ¸ÞÀÏ (¿¹¸¦ µé¾î, Microsoft Outlook Express ÀÏ °æ¿ì¿¡´Â New mail > Alt+o > Alt+x (with No Encryption)) À» reduce@trinitas.mju.ac.kr ·Î º¸³½´Ù: 

input:
off echo$
off nat$
write "comment The following program computes minimum and
maximum of a polynomial function f in 3 variables under 
a polynomial constraint g=0. It is a prototype example of
Lagrange's method of multipliers, lamda";

% inputs:
     f:=x^3+2*x*y*z-z^2$
   g:=x^2+y^2+z^2-1$
% If you choose inputs different from the above ones,
% then you may have to modify the following lines.
    f1:=df(f,x)-lamda*df(g,x)$
     f2:=df(f,y)-lamda*df(g,y)$
     f3:=df(f,z)-lamda*df(g,z)$
    result:=solve({f1,f2,f3,g},{lamda,x,y,z})$
%% You don't have to modify the rest of lines.
write "critical points := ",result;
write "comment Now mimimum and maximum of f under the constraint
g=0 are determined as:";
     minimum:=sub(part(result,1),f)$
     ctps_min:=part(result,1)cons{}$
     maximum:=sub(part(result,1),f)$
     ctps_max:=part(result,1)cons{}$
j:=2$
while j leq length(result) do
     begin a:=sub(part(result,j),f)$
          if a geq maximum then
               begin if a greaterp maximum then
                         begin maximum:=a$
                                  ctps_max:=part(result,j)cons{}$
                         end
                    else if a leq minimum then
                         begin
                                  ctps_min:=part(result,j).ctps_min$
                         end
                    else
                         begin
                                  ctps_max:=part(result,j).ctps_max$
                         end$
               end
          else if a leq minimum then
               begin if a lessp minimum then
                         begin minimum:=a$
                                  ctps_min:=part(result,j)cons{}$
                         end
                   else
                        begin
                                  ctps_min:=part(result,j).ctps_min$
                        end$
               end
          else begin  end$
j:=j+1$
end$
write "The maximum value of f under g=0 is, ",maximum,", and it occurs at the critical points ",ctps_max;
write "The minimum value of f under g=0 is, ",minimum,", and it occurs at the critical points ",ctps_min;
write "comment Check: Here are the values of f at all the computed critical points";
j:=1$
while j leq length(result) do
     begin a:=sub(part(result,j),f)$
          write "The value of f at the critical point ",part(result,j)," is: ", a;
          j:=j+1$
     end$
end input:

±×·¯¸é, ÀüÀÚ¸ÞÀÏÀÇ µµÂø Áï½Ã input: °ú end input: »çÀÌÀÇ Reduce ¸í·É¾îµéÀ» ÀÚµ¿ÀûÀ¸·Î ¼öÇàÇÏ¿© ±× °á°ú¿Í º» ¼­¹ö¿¡¼­ Àüü °è»ê¿¡ ¼Ò¿äµÈ ½Ã°£(timex report)À» ´ãÀº ÀüÀÚ¸ÞÀÏÀ» ¼Û½ÅÀÚ¿¡°Ô Áï½Ã ¹ß¼ÛÇÔ.

[ÁÖÀÇ] º¹ÀâÇÏÁö ¾ÊÀº °è»êÀ» À§ ÀüÀÚ¸ÞÀÏ ÁÖ¼Ò·Î ÀÇ·ÚÇÏ¿´À» °æ¿ì¿¡´Â ´ë°³ 3 - 4 ºÐ À̳»¿¡ °á°ú¸¦ ¹Þ¾Æ º¼ ¼ö ÀÖ½À´Ï´Ù.  ±×·¯³ª, ÀÇ·ÚÇÑ °è»êÀ» ¼öÇàÇÑ ÈÄ ±× °è»ê°á°ú¸¦ ´ä½ÅÀ¸·Î¼­ ¼Û½ÅÀÚ¿¡°Ô º¸³» µå·ÈÀ¸³ª, (i) ¼Û½ÅÀÚÀÇ ÁÖ¼Ò°¡ Ʋ¸®°Å³ª (ii) ȤÀº ¼Û½ÅÀÚÀÇ ÀüÀÚ¸ÞÀÏ ÅëÀÌ ´Ù¸¥ ÀüÀÚ¸ÞÀÏ·Î °¡µæ Â÷ ÀÖ¾î, ¼Û½ÅÀÚ Ãø¿¡ Á¦´ë·Î Á¢¼ö°¡ µÇÁö ¾Ê°í µÇµ¹¾Æ ¿À´Â °æ¿ì°¡ °£È¤ ÀÖÀ¸´Ï, À§ÀÇ Á¦ 4Ç×ÀÇ ÀüÀÚ¸ÞÀÏ ÁÖ¼Ò·Î °è»êÀ» ÀÇ·ÚÇÑ ÈÄ ÀÏÁ¤½Ã°£ ÀÌ»ó ±â´Ù·Áµµ ´ä½ÅÀÌ ¾øÀ» °æ¿ì¿¡´Â, º»ÀÎÀÇ ¸ÞÀÏ°èÁ¤ÀÇ »óŸ¦ Á¡°ËÇÏ¿© (i) °ú (ii)ÀÇ ¹®Á¦¸¦ ÇØ°áÇÑ ÈÄ ´Ù½Ã ÇÑ ¹ø À§ÀÇ Á¦ 4Ç×°ú °°ÀÌ ÀüÀÚ¸ÞÀÏÀ» º¸³» ÁÖ½Ã¸é µÇ°Ú½À´Ï´Ù.  

5. ¿¹Á¦
º»¹®ÀÌ À§ÀÇ Á¦ 4Ç׿¡ ÀÖ´Â ÇÁ·Î±×·¥À¸·Î ÀÌ·ç¾îÁø ÀüÀÚ¸ÞÀÏÀ» reduce@trinitas.mju.ac.kr ·Î º¸³»¸é ´ÙÀ½°ú °°Àº °è»ê °á°ú¸¦ ¹Þ¾Æº¸°Ô µÉ °ÍÀÔ´Ï´Ù:

Comment The followings are the requested inputs:

off echo$
off nat$
write "comment The following program computes minimum and
maximum of a polynomial function f in 3 variables under
a polynomial constraint g=0. It is a prototype example of
Lagrange's method of multipliers, lamda";

% inputs:
     f:=x^3+2*x*y*z-z^2$
   g:=x^2+y^2+z^2-1$
% If you choose inputs different from the above ones,
% then you may have to modify the following lines.
    f1:=df(f,x)-lamda*df(g,x)$
     f2:=df(f,y)-lamda*df(g,y)$
     f3:=df(f,z)-lamda*df(g,z)$
    result:=solve({f1,f2,f3,g},{lamda,x,y,z})$
%% You don't have to modify the rest of lines.
write "critical points := ",result;
write "comment Now mimimum and maximum of f under the constraint
g=0 are determined as:";
     minimum:=sub(part(result,1),f)$
     ctps_min:=part(result,1)cons{}$
     maximum:=sub(part(result,1),f)$
     ctps_max:=part(result,1)cons{}$
j:=2$
while j leq length(result) do
     begin a:=sub(part(result,j),f)$
          if a geq maximum then
               begin if a greaterp maximum then
                         begin maximum:=a$
                                  ctps_max:=part(result,j)cons{}$
                         end
                    else if a leq minimum then
                         begin
                                  ctps_min:=part(result,j).ctps_min$
                         end
                    else
                         begin
                                  ctps_max:=part(result,j).ctps_max$
                         end$
               end
          else if a leq minimum then
               begin if a lessp minimum then
                         begin minimum:=a$
                                  ctps_min:=part(result,j)cons{}$
                         end
                   else
                        begin
                                  ctps_min:=part(result,j).ctps_min$
                        end$
               end
          else begin  end$
j:=j+1$
end$
write "The maximum value of f under g=0 is, ",maximum,", and it occurs at the critical points ",ctps_max;
write "The minimum value of f under g=0 is, ",minimum,", and it occurs at the critical points ",ctps_min;
write "comment Check: Here are the values of f at all the computed critical points";
j:=1$
while j leq length(result) do
     begin a:=sub(part(result,j),f)$
          write "The value of f at the critical point ",part(result,j)," is: ", a;
          j:=j+1$
     end$ 

                                                                                                             
Comment Here are the results:$

comment The following program computes minimum and
maximum of a polynomial function f in 3 variables under
a polynomial constraint g=0. It is a prototype example of
Lagrange's method of multipliers, lamda$

critical points := {{x=( - 2)/3,z=2/3,y=1/3,lamda=( - 4)/3},
{x=( - 2)/3,z=( - 2)/3,y=( - 1)/3,lamda=( - 4)/3},
{x=( - 3)/8,
z=sqrt(11)/(8*sqrt(2)),
y=( - 3*sqrt(11))/(8*sqrt(2)),
lamda=1/8},
{x=( - 3)/8,
z=( - sqrt(11))/(8*sqrt(2)),
y=(3*sqrt(11))/(8*sqrt(2)),
lamda=1/8},
{x=1,z=0,y=0,lamda=3/2},
{x=0,z=1,y=0,lamda=-1},
{x=0,z=0,y=1,lamda=0},
{x=0,z=0,y=-1,lamda=0},
{x=0,z=-1,y=0,lamda=-1},
{x=-1,z=0,y=0,lamda=( - 3)/2}}$

comment Now mimimum and maximum of f under the constraint
g=0 are determined as:$

The maximum value of f under g=0 is, 1, and it occurs at the critical points {{x
=1,z=0,y=0,lamda=3/2}}$

The minimum value of f under g=0 is, ( - 28)/27
, and it occurs at the critical points {{x=( - 2)/3,z=( - 2)/3,y=( - 1)/3,lamda=
( - 4)/3},
{x=( - 2)/3,z=2/3,y=1/3,lamda=( - 4)/3}}$

comment Check: Here are the values of f at all the computed critical points$

The value of f at the critical point {x=( - 2)/3,z=2/3,y=1/3,lamda=( - 4)/3}
 is: ( - 28)/27$

The value of f at the critical point {x=( - 2)/3,z=( - 2)/3,y=( - 1)/3,lamda=( -
 4)/3} is: ( - 28)/27$

The value of f at the critical point {x=( - 3)/8,
z=sqrt(11)/(8*sqrt(2)),
y=( - 3*sqrt(11))/(8*sqrt(2)),
lamda=1/8} is: 7/128$

The value of f at the critical point {x=( - 3)/8,
z=( - sqrt(11))/(8*sqrt(2)),
y=(3*sqrt(11))/(8*sqrt(2)),
lamda=1/8} is: 7/128$

The value of f at the critical point {x=1,z=0,y=0,lamda=3/2} is: 1$

The value of f at the critical point {x=0,z=1,y=0,lamda=-1} is: -1$

The value of f at the critical point {x=0,z=0,y=1,lamda=0} is: 0$

The value of f at the critical point {x=0,z=0,y=-1,lamda=0} is: 0$

The value of f at the critical point {x=0,z=-1,y=0,lamda=-1} is: -1$

The value of f at the critical point {x=-1,z=0,y=0,lamda=( - 3)/2} is: -1$
 
comment The following is the timex report of the system in seconds:
real        1.70
user        0.40
sys         0.13
$

Remark. Maple ÀÇ °æ¿ì¿Í´Â ´Þ¸® reduce@trinitas.mju.ac.kr  À¸·Î ºÎÅÍ Reduce ¸í·É¾î¿¡ ´ëÇÑ ¼³¸íÀ» ¾òÀ» ¼ö ¾øÀ¸³ª, intro2reduce.html ¿¡ Á¢¼ÓÇϸé user's help ¿Í °ü·ÃµÈ ´Ù¾çÇÑ ÀڷḦ Á¢ÇÒ ¼ö ÀÖÀ½.

 
  Mail to Professor Sun Tae Soh Copyrights trinitas.mju.ac.kr All Rights Reserved.