Introduction
   InetCAS
     InetMaple
     InetReduce
   InetApplication
     InetMatlab
   Mathematics
     Combinatorics
       - numbpart
       - multipart
       - arithinva
       - rbf

1. Purpose of numbpart@trinitas.mju.ac.kr     [ ÇÑ±Û ¼³¸í
Automatic computation of the value of the partition function p(n) for a given number n, using Rademacher's formula for p(n) and immediate return to the e-mail sender of the computed result.

2. Introduction
We first recall that p(n) is, by definition, the number of writing a given number n as a sum of others in a non-increasing way. For example, p(5) = 7, since 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. At around 1937, Rademacher discovered a very complicated but theoretically exact formula for p(n) in the form of a convergent infinite series.

Rademacher's Theorem for p(n) 

We use his formula in this Service of our InetCompu. His formula is not recursive and is, up to now, practically the only efficient formula allowing us to compute the value of p(n) particularly when n is bigger than, say, 510,000. For instance, if one tries the command, numbpart, within Maple, it will be impossible for him to compute p(510,000) even when the size of available main memory is 128 Mbytes, because Maple's command, numbpart, is recursive and hence it requires too much memory. Try to compute the value of p(n) when n=100,000 with Maple that is installed in your machine or Server, in order to see if it is even possible! 

But, there are several problems in using Rademacher's formula for p(n) in actual computation, and one of serious problems of Rademacher's formula is -  one has to rely on approximated computations of fractional real numbers of very much different sizes of which partial sum converges to not-yet-known true integer value of   p(n) for a given number n.

3. Contributor: The program we are using for Rademacher's formula for p(n) was developed in Reduce commands by Prof. Sun T. Soh, Dept of Math, Myong Ji Univ., Rep. of Korea.  He developed this program to celebrate lifetime works of Prof. George Andrews at Penn. St Univ. on Addtive Number Theory. 

4. Notes
4-1. His program is very reliable and efficient.  In fact, it can compute the values of p(n) for all n such that n <= 22,000,000 ~.  Such an upper bound is only limited by inability of the current version of reduce in properly handling input/output buffers, especially when the number of decimal digits of data approaches very near to 10^5000.
4-2. For a trouble-free handling of your e-mail, we recommend you to use MicroSoft Outlook Express, New mail > Alt+O > Alt+X (with No Encryption), to send out an e-mail to us.

5. How to do: Send an e-mail with plain text style (for instance, in the case of MicroSoft Outlook Express, New mail > Alt+o > Alt+x (with No Encryption)) to numbpart@trinitas.mju.ac.kr whose main body should consist of, for example,

                                input: n=1234567  

Then upon the arrival of the e-mail, the value of p(1234567) is automatically computed and sent back to the e-mail sender immediately.

[Reminder] When the requested job is computationally not very complicated, it should be quite the case that you will receive the result within a few Minutes.  But, our response consisting of the computed results can not be delivered to the sender properly, if either there is a spelling mistake in sender's e-mail address or sender's mail box is already filled with too many of other e-mails. Thus, if you do not receive the results although you have waited for some time, then please check your mail account to correct the above trouble-causing problems.  After that, try again according to the procedure described in Section 5 above.

6. An Example
If you send an e-mail to numbpart@trinitas.mju.ac.kr whose main body consists of 

input: n=1234567

then you should receive the following lines as output:

Comment The following is the requested input:
n:=1234567;

Comment Here is the result of computation:$

comment t(k) = the k-th term in Rademacher's formula for p(n) when n := 1234567$

t(1) := 

715490880908500090668830204971571483282076915621981638292949344880079431938962\
576616856283139608159603320390006454590993465575888598311877101185251260952638\
104333567814638303161155133579697248237093428793577819038063905854717015597399\
585216283540966035978582677467955302786975214400242521093365769853143215687615\
543827820468133192277814647650183125609480408170481114482606332411772207385499\
476998482655218827261186031705023313307874014273301300297053610135197709439985\
904984032185374946844419382113860443967309684571387268375077055167683611188310\
415800797515219481885264654498863641033307739629340318142909047961816717574545\
038063302180706901599594598480550744900310304080125051702741506545540809585926\
876061043777766937526852464833287846420247276056627723451320743239594568836087\
432035753579659123314630190205931905650212235380650496590914435629227555569797\
394845013526086367203950617996367530901222036993907458991864726450938183881600\
915881548287019564815637120286792310876464204116153233297878185629018841656811\
492995304925738482756784778728332435010508826332097457790418230853782763077548\
360783957283548013266304181056802001515254028085673569648455221323427253150692\
9143817463763141204784660574943985675960042312092398756262386.9437436834509$

t(2) := - 

646384239560223084468700078738095411758409495443243448093736135967739258882037\
774527614475653437409318783504740805421610292215347524845105940560984611714986\
786623749874235920746618953914502376843040089031989394265073634257807077244404\
062352503105930587904264977702974512649074341050229731966175604233066030330234\
307406911681681257612172291356124526629568956906587894503947646784103577388980\
679126431730521704470046148001122592696950681684430913210551779367779461340209\
322424247155373016995996438462775669191018313758462216767191962451490325866372\
890617490148069677199837667644858301897020579862678726227528312154.43224937895\
289626087241816615742503234155822879046613613871682343315066147152909044535916\
906024468807661544821208988802453277436215206927921023661052398425720471980381\
186656214712329313724912565360091942684759308908398989058116187663004117493434\
550406247118803447618217561515426098117407396824086017201837399416605815410800\
671611760364900601446083131889788446904043469498265553408510457153360214808927\
791050228677220975390691458630333307662787529491078400913901859210397263395358\
130382346431862027367204140792889522864494160543847958997683652130796271083358\
94726808151860595791817573865577852076880266129281583234465969336811167393$

t(3) := - 

181785400593037617890851877545890519094020758838796249145498356571083421061165\
098430182568600222590696691333940618327041936790907944356232309774007217402686\
072092782918146719250091774850108250597131815736721173938655810550922026404583\
130103620349489712271261765263412393535148217298250510846721377978369195408381\
123994418705839230256228597215235786660663726651069494084793307496328908494441\
9496044749300817.8922369923143297596496160441656509093800091717980493332763507\
066148332906189091605658933644323852267288380612012562387202450215380015555977\
422834132905177917299942642526842965627249334825102755343353512905921463457720\
6$

t(4) := - 

124973345432793477526913218024113417024916155596319716123900959167935831005396\
172378408257248628952119954120827771902926635195618013278515505329438529964191\
820497465818303503321246571393565243703401860700054404240912760797087177747848\
808228621184547854673600854457728334300730549220657162677022911202661.47052287\
194938589447453633846882435831094510846161917003127791070676100195557686711602\
77671682001505642728029993835$

t(5) := 0$

t(6) := 

186238997239247843684104917101252915830122485133578995034766181136075336596004\
553993764863958521236375120902602085971551899688731898216825401411241711584224\
19541853496183638018799857080744964643891233.553683488467194339233853874863015\
683384188799771782342369985551455363359616337979504556822421726439688442342012\
7818$

t(7) := - 

782520273130950940627774875109867272632972467666186471049681298447822193631719\
962723187428236919898967706007960079055845751830930524810709495156506495451752\
34028819784065.000861224202169752573014341824510568499276$

t(8) := - 

604754911052939226456034391872992447704633570202965492427589981678301017516836\
2266770223794822400334715770801668512798250957201315293313641045366287.2924012\
566952941688303244127821482$

t(9) := 

531671160751248513632888911446446531950380552206448678891567846550022017258961\
9722996751778766707254670302614416212425287699988557.7585664016381091472487769\
35273$

t(10) := 0$

t(11) := 

324921599983802460692676060173448137333975531659562884202821463306518012302065\
7792394925249969620405958323.121107775976570607721068249856007803$

t(12) := 

112484373196395077295180066358650407543584937526839868782854081117429085958646\
5750905992364267318.561725300705727046801$

t(13) := 0$

t(14) := 

213088786218440868550405688355782398118118974493463188161881742914479812575674\
7331.586376957247901466071147513$

t(15) := 0$

t(16) := 

20667403333394079253304664685077788651865766621878024093070894329661205.506789\
38971150886421281$

t(17) := 

906450859895924560495888498222650293648359950333177148016386935844.21941872216\
689439$

t(18) := - 
55242159793777147410364343715233148256990306709665248559781550.9058920657701547$

t(19) := - 
16279399009539245745659540870001333108615235753769869094725.055062922133127$

t(20) := 0$

t(21) := - 
11553317602807885324795961579138538164936815762289976.814389083214838584$

t(22) := 25291922427566184313788067346969907912398651177922.81162436303916$

t(23) := 0$

t(24) := - 95478594383391793803180919232259944913149870.350114670789738753$

t(25) := 0$

t(26) := 0$

t(27) := - 789809998825346369987261104083803489684.5516839650229179$

t(28) := - 7130030931856561784529910339177479075.47136216872206$

t(29) := 0$

t(30) := 0$

t(31) := - 681500048611159977143858036826989.1192143954378274$

t(32) := 23702464396157510272556638243492.5767429429156$

t(33) := - 1206706386657301981151550891981.4649828812127$

t(34) := 185244168637809133888016876576.3977649815244$

t(35) := 0$

t(36) := 896148501102143827780865649.056507576163826$

t(37) := - 473620382027359942712402247.869064826654$

t(38) := - 30539341852964064313180623.7654107381355$

t(39) := 0$

t(40) := 0$

t(41) := 0$

t(42) := 17887743689306242195180.505846212286179$

t(43) := 6429550741850582916459.4000079441379$

t(44) := - 2762582195494791384703.150433521969$

t(45) := 0$

t(46) := 0$

t(47) := 0$

t(48) := - 2324663733836091895.423179070150919$

t(49) := 0$

t(50) := 0$

t(51) := 124897864676152106.9695564614487$

t(52) := 0$

t(53) := - 39318902702708395.6621000656839$

t(54) := - 3780415831433575.6084029456651$

t(55) := 0$

t(56) := - 283674101024237.5063807196981$

t(57) := 235056197520887.480187107817$

t(58) := 0$

t(59) := - 115842930553315.016749655118$

t(60) := 0$

t(61) := - 35113131351459.1468425893897$

t(62) := 12227867395983.685302776678$

t(63) := 2630810836497.4682597355395$

t(64) := 2441961456648.624086192557$

t(65) := 0$

t(66) := - 445899676621.3883196494486$

t(67) := - 349553228850.989603702593$

t(68) := - 118447343337.147079034207$

t(69) := 0$

t(70) := 0$

t(71) := 0$

t(72) := 3663423735.03960176611819$

t(73) := 20511637850.77847211184$

t(74) := 3201447309.0065847618363$

t(75) := 0$

t(76) := 2034284831.885585389844$

t(77) := 2595353016.901182996317$

t(78) := 0$

t(79) := 0$

t(80) := 0$

t(81) := - 246295392.7878120033387$

t(82) := 0$

t(83) := - 31501914.9348508063765$

t(84) := 22519937.938630167419$

t(85) := 0$

t(86) := - 20641072.174122690619$

t(87) := 0$

t(88) := 3119828.8744769323185$

t(89) := 0$

t(90) := 0$

t(91) := 0$

t(92) := 0$

t(93) := 3146705.55521874493$

t(94) := 0$

t(95) := 0$

t(96) := 96306.37431131007617$

t(97) := 0$

t(98) := 0$

t(99) := - 383539.42933857271$

t(100) := 0$

t(101) := 306468.661337514042$

t(102) := - 230767.453571350339$

t(103) := 0$

t(104) := 0$

t(105) := 0$

t(106) := - 70972.2393080120499$

t(107) := 0$

t(108) := 33590.209434412711$

t(109) := - 2205.3724639855506$

t(110) := 0$

t(111) := 12166.12897397441$

t(112) := - 12590.018778048684$

t(113) := 0$

t(114) := 6504.6246847185273$

t(115) := 0$

t(116) := 0$

t(117) := 0$

t(118) := 2371.783733219912$

t(119) := 521.1894471713266$

t(120) := 0$

t(121) := - 2772.23360602359$

t(122) := 727.387074013241$

t(123) := 0$

t(124) := - 783.754878550522$

t(125) := 0$

t(126) := 140.209293312099$

t(127) := 1081.46194554012$

t(128) := - 407.9658015343132$

t(129) := 933.687658234734$

t(130) := 0$

t(131) := 0$

t(132) := 33.3669457466735$

t(133) := 225.82846750291$

t(134) := 236.675651959201$

t(135) := 0$

t(136) := 75.4787604700645$

t(137) := - 186.36789146153$

t(138) := 0$

t(139) := 0$

t(140) := 0$

t(141) := 0$

t(142) := 0$

t(143) := 0$

t(144) := - 2.72167989843604$

t(145) := 0$

t(146) := 47.1121121926293$

t(147) := 0$

t(148) := - 39.180862184586$

t(149) := - 29.898783160802$

t(150) := 0$

t(151) := 0$

t(152) := 8.553355865012$

t(153) := 6.90190020446$

t(154) := 2.4270745418037$

t(155) := 0$

t(156) := 0$

t(157) := 0$

t(158) := 0$

t(159) := 5.1639892210306$

t(160) := 0$

t(161) := 0$

t(162) := - 3.0315068434988$

t(163) := 0$

t(164) := 0$

t(165) := 0$

t(166) := - 2.8709093900987$

t(167) := 0$

t(168) := 2.4261967611585$

t(169) := 0$

t(170) := 0$

t(171) := 2.0180306676496$

t(172) := 2.7826165778986$

t(173) := 0$

t(174) := 0$

t(175) := 0$

t(176) := - 0.73051301766582$

t(177) := - 0.29688077130683$

t(178) := 0$

t(179) := 0$

t(180) := 0$

t(181) := 0$

t(182) := 0$

t(183) := 0.98130095750553$

t(184) := 0$

t(185) := 0$

t(186) := 0.27000839085032$

t(187) := 1.1102436539792$

t(188) := 0$

t(189) := 0.41638953115812$

t(190) := 0$

t(191) := 0.53495973448487$

t(192) := - 0.12015047704749$

t(193) := - 0.41988633092102$

t(194) := 0$

t(195) := 0$

t(196) := 0$

t(197) := 0.10222435860785$

t(198) := 0.29136038804454$

t(199) := - 0.17220792647499$

t(200) := 0$

t(201) := - 0.17707571548646$

t(202) := 0.072166712944328$

t(203) := 0$

t(204) := 0.17096910659204$

t(205) := 0$

t(206) := 0$

t(207) := 0$

t(208) := 0$

t(209) := 0.025792598279001$

t(210) := 0$

t(211) := 0$

t(212) := 0.13572367635812$

t(213) := 0$

t(214) := 0$

t(215) := 0$

t(216) := 0.034168428975676$

t(217) := - 0.0055355590174119$

t(218) := 0.050307742504395$

t(219) := 0.018169248768499$



comment The partial sum up to the 218-th term is: $

Rademacher(1234567) := 

715490880908500090668830204971571483282076915621981638292949344880079431938962\
576616856283139608159603320390006454590993465575888598311877101185251260952638\
104333567814638303161155133579697248237093428793577819038063905854717015597399\
585216283540966035978582677467955302786975214400242521093365769853143215687615\
543827820468133192277814647650183125609480408170481114482606332411772207385499\
476998482655218827261186031705023313307874014273301300297053610135197709439985\
904984032185374946844419382113860443967309684571387268375077055167683611188310\
415800797515219481885264654498863641033307739629340318142909047961816717509906\
614107279872260031591720788939374903950765979735315678089144732619652605808474\
114613478434026005648501990752745685391025741304143212857264644778423070157425\
057048329987584461419238739968247601641309036259438588634451037030651237617671\
625440399708457144457034822188531540046055848922280658862841197257208456619585\
063106990471776117839733933821863731203738887642219959698259472920648551500949\
773500258044342763418353205860697591237423169787525187299963229569479391673799\
046398119149345658525737875496420744725360387951929243107396970737312263130169\
8197398456788392768874673519277489020839294797279106528252500.0027065859747$

comment The partial sum up to the 217-th term is: $

Rademacher(1234567) := 

715490880908500090668830204971571483282076915621981638292949344880079431938962\
576616856283139608159603320390006454590993465575888598311877101185251260952638\
104333567814638303161155133579697248237093428793577819038063905854717015597399\
585216283540966035978582677467955302786975214400242521093365769853143215687615\
543827820468133192277814647650183125609480408170481114482606332411772207385499\
476998482655218827261186031705023313307874014273301300297053610135197709439985\
904984032185374946844419382113860443967309684571387268375077055167683611188310\
415800797515219481885264654498863641033307739629340318142909047961816717509906\
614107279872260031591720788939374903950765979735315678089144732619652605808474\
114613478434026005648501990752745685391025741304143212857264644778423070157425\
057048329987584461419238739968247601641309036259438588634451037030651237617671\
625440399708457144457034822188531540046055848922280658862841197257208456619585\
063106990471776117839733933821863731203738887642219959698259472920648551500949\
773500258044342763418353205860697591237423169787525187299963229569479391673799\
046398119149345658525737875496420744725360387951929243107396970737312263130169\
8197398456788392768874673519277489020839294797279106528252499.9523988434703$

comment The partial sum up to the 216-th term is: $

Rademacher(1234567) := 

715490880908500090668830204971571483282076915621981638292949344880079431938962\
576616856283139608159603320390006454590993465575888598311877101185251260952638\
104333567814638303161155133579697248237093428793577819038063905854717015597399\
585216283540966035978582677467955302786975214400242521093365769853143215687615\
543827820468133192277814647650183125609480408170481114482606332411772207385499\
476998482655218827261186031705023313307874014273301300297053610135197709439985\
904984032185374946844419382113860443967309684571387268375077055167683611188310\
415800797515219481885264654498863641033307739629340318142909047961816717509906\
614107279872260031591720788939374903950765979735315678089144732619652605808474\
114613478434026005648501990752745685391025741304143212857264644778423070157425\
057048329987584461419238739968247601641309036259438588634451037030651237617671\
625440399708457144457034822188531540046055848922280658862841197257208456619585\
063106990471776117839733933821863731203738887642219959698259472920648551500949\
773500258044342763418353205860697591237423169787525187299963229569479391673799\
046398119149345658525737875496420744725360387951929243107396970737312263130169\
8197398456788392768874673519277489020839294797279106528252499.9579344024877$

comment The partial sum up to the 219-th term is: $

Rademacher(1234567) := 

715490880908500090668830204971571483282076915621981638292949344880079431938962\
576616856283139608159603320390006454590993465575888598311877101185251260952638\
104333567814638303161155133579697248237093428793577819038063905854717015597399\
585216283540966035978582677467955302786975214400242521093365769853143215687615\
543827820468133192277814647650183125609480408170481114482606332411772207385499\
476998482655218827261186031705023313307874014273301300297053610135197709439985\
904984032185374946844419382113860443967309684571387268375077055167683611188310\
415800797515219481885264654498863641033307739629340318142909047961816717509906\
614107279872260031591720788939374903950765979735315678089144732619652605808474\
114613478434026005648501990752745685391025741304143212857264644778423070157425\
057048329987584461419238739968247601641309036259438588634451037030651237617671\
625440399708457144457034822188531540046055848922280658862841197257208456619585\
063106990471776117839733933821863731203738887642219959698259472920648551500949\
773500258044342763418353205860697591237423169787525187299963229569479391673799\
046398119149345658525737875496420744725360387951929243107396970737312263130169\
8197398456788392768874673519277489020839294797279106528252500.0208758347418$

comment with the first 1-th fractional digits := 0$

comment Thus, one concludes that the exact value of p(1234567) is: $

p(1234567) := 
715490880908500090668830204971571483282076915621981638292949344880079431938962\
576616856283139608159603320390006454590993465575888598311877101185251260952638\
104333567814638303161155133579697248237093428793577819038063905854717015597399\
585216283540966035978582677467955302786975214400242521093365769853143215687615\
543827820468133192277814647650183125609480408170481114482606332411772207385499\
476998482655218827261186031705023313307874014273301300297053610135197709439985\
904984032185374946844419382113860443967309684571387268375077055167683611188310\
415800797515219481885264654498863641033307739629340318142909047961816717509906\
614107279872260031591720788939374903950765979735315678089144732619652605808474\
114613478434026005648501990752745685391025741304143212857264644778423070157425\
057048329987584461419238739968247601641309036259438588634451037030651237617671\
625440399708457144457034822188531540046055848922280658862841197257208456619585\
063106990471776117839733933821863731203738887642219959698259472920648551500949\
773500258044342763418353205860697591237423169787525187299963229569479391673799\
046398119149345658525737875496420744725360387951929243107396970737312263130169\
8197398456788392768874673519277489020839294797279106528252500$

comment The following is the timex report of the system in seconds:
real 36.34
user 35.74
sys 0.26
$

 
  Mail to Professor Sun Tae Soh Copyrights trinitas.mju.ac.kr All Rights Reserved.