| 1. Purpose of numbpart@trinitas.mju.ac.kr      
                                [ ÇÑ±Û ¼³¸í 
                              ] Automatic computation of the value of the partition function p(n) for a given number n,          
using Rademacher's formula for p(n) and immediate return to the e-mail sender        
                              of the computed result.
 2. IntroductionWe first recall that p(n) is, by definition, the number of writing a given 
number n as a sum of others in a non-increasing way. For example, p(5) = 7, 
since 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. At around 1937, Rademacher 
discovered a very complicated but theoretically exact formula for p(n) in the 
form of a convergent infinite series.
 Rademacher's 
                              Theorem for p(n)  We use his formula in this Service of our InetCompu. His formula is not                           
recursive and is, up to now, practically the only efficient formula allowing us to compute                           
the value of p(n) particularly when n is bigger than, say, 510,000. For                           
instance, if one tries the command, numbpart, within Maple, it will be impossible                 
for him to compute p(510,000) even when the size of available main memory is 128 Mbytes, because Maple's command, numbpart, is recursive and                 
hence it requires too much memory. Try to compute the value of p(n) when                 
n=100,000 with Maple that is installed in your machine or Server, in order to                 
see if it is even possible!   But, there are several problems in using Rademacher's formula for p(n) in actual computation, and                 
one of                  
serious problems of Rademacher's formula is -  one has to rely on approximated computations of fractional real numbers of very much different sizes of which partial sum converges to not-yet-known true integer value of                   
p(n) for a given number n.  3. Contributor: The program we are using                 
                              for Rademacher's formula for p(n) was developed in Reduce                           
commands by Prof. Sun T. Soh, Dept of Math, Myong Ji Univ., Rep. of Korea.                  
                              He developed this program to celebrate lifetime                 
                              works of Prof. George Andrews at Penn. St Univ. on                 
                              Addtive Number Theory.                          
 4. Notes: 4-1. His program is                  
                              very reliable and efficient.  In fact, it can                  
                              compute the values of p(n) for all n such that n                  
                              <= 22,000,000 ~.  Such an upper bound is                  
                              only limited by inability of the current version                  
                              of reduce in properly handling input/output                  
                              buffers, especially when the number of decimal                  
                              digits of data approaches very near to                  
                              10^5000.
 4-2. For a trouble-free handling of your e-mail, we recommend you to use MicroSoft Outlook Express, New mail > Alt+O >           
                              Alt+X (with No Encryption),  to send out an e-mail to           
                              us.
 5. How to do: Send an e-mail with plain text style       
(for instance, in the case of MicroSoft Outlook Express, New mail > Alt+o       
> Alt+x (with No Encryption)) to numbpart@trinitas.mju.ac.kr              
whose main body should consist of, for example,                                                           
input: n=1234567    Then upon the arrival of the e-mail, the value of p(1234567) is                          
automatically computed and sent back to the e-mail sender immediately. [Reminder] When the requested job is computationally   
not very complicated, it should be quite the case that you will receive the   
result within a few Minutes.  But, our response consisting of the computed   
results can not be delivered to the sender properly, if either   
there is a spelling mistake in sender's e-mail address or sender's mail box is   
already filled with too many of other e-mails. Thus, if you do not receive the results although you   
have waited for some time, then please check your mail account to correct the   
above trouble-causing problems.  After that, try again according to the   
procedure described in Section 5 above. 6. An ExampleIf you send an e-mail to numbpart@trinitas.mju.ac.kr        
whose main body consists of
 input: n=1234567 then you should receive the following lines as output: Comment The following is the requested input:n:=1234567;
 
 Comment Here is the result of computation:$
 
 comment t(k) = the k-th term in Rademacher's formula for p(n) when n := 1234567$
 
 t(1) :=
 
 715490880908500090668830204971571483282076915621981638292949344880079431938962\
 576616856283139608159603320390006454590993465575888598311877101185251260952638\
 104333567814638303161155133579697248237093428793577819038063905854717015597399\
 585216283540966035978582677467955302786975214400242521093365769853143215687615\
 543827820468133192277814647650183125609480408170481114482606332411772207385499\
 476998482655218827261186031705023313307874014273301300297053610135197709439985\
 904984032185374946844419382113860443967309684571387268375077055167683611188310\
 415800797515219481885264654498863641033307739629340318142909047961816717574545\
 038063302180706901599594598480550744900310304080125051702741506545540809585926\
 876061043777766937526852464833287846420247276056627723451320743239594568836087\
 432035753579659123314630190205931905650212235380650496590914435629227555569797\
 394845013526086367203950617996367530901222036993907458991864726450938183881600\
 915881548287019564815637120286792310876464204116153233297878185629018841656811\
 492995304925738482756784778728332435010508826332097457790418230853782763077548\
 360783957283548013266304181056802001515254028085673569648455221323427253150692\
 9143817463763141204784660574943985675960042312092398756262386.9437436834509$
 
 t(2) :=  -
 
 646384239560223084468700078738095411758409495443243448093736135967739258882037\
 774527614475653437409318783504740805421610292215347524845105940560984611714986\
 786623749874235920746618953914502376843040089031989394265073634257807077244404\
 062352503105930587904264977702974512649074341050229731966175604233066030330234\
 307406911681681257612172291356124526629568956906587894503947646784103577388980\
 679126431730521704470046148001122592696950681684430913210551779367779461340209\
 322424247155373016995996438462775669191018313758462216767191962451490325866372\
 890617490148069677199837667644858301897020579862678726227528312154.43224937895\
 289626087241816615742503234155822879046613613871682343315066147152909044535916\
 906024468807661544821208988802453277436215206927921023661052398425720471980381\
 186656214712329313724912565360091942684759308908398989058116187663004117493434\
 550406247118803447618217561515426098117407396824086017201837399416605815410800\
 671611760364900601446083131889788446904043469498265553408510457153360214808927\
 791050228677220975390691458630333307662787529491078400913901859210397263395358\
 130382346431862027367204140792889522864494160543847958997683652130796271083358\
 94726808151860595791817573865577852076880266129281583234465969336811167393$
 
 t(3) :=  -
 
 181785400593037617890851877545890519094020758838796249145498356571083421061165\
 098430182568600222590696691333940618327041936790907944356232309774007217402686\
 072092782918146719250091774850108250597131815736721173938655810550922026404583\
 130103620349489712271261765263412393535148217298250510846721377978369195408381\
 123994418705839230256228597215235786660663726651069494084793307496328908494441\
 9496044749300817.8922369923143297596496160441656509093800091717980493332763507\
 066148332906189091605658933644323852267288380612012562387202450215380015555977\
 422834132905177917299942642526842965627249334825102755343353512905921463457720\
 6$
 
 t(4) :=  -
 
 124973345432793477526913218024113417024916155596319716123900959167935831005396\
 172378408257248628952119954120827771902926635195618013278515505329438529964191\
 820497465818303503321246571393565243703401860700054404240912760797087177747848\
 808228621184547854673600854457728334300730549220657162677022911202661.47052287\
 194938589447453633846882435831094510846161917003127791070676100195557686711602\
 77671682001505642728029993835$
 
 t(5) := 0$
 
 t(6) :=
 
 186238997239247843684104917101252915830122485133578995034766181136075336596004\
 553993764863958521236375120902602085971551899688731898216825401411241711584224\
 19541853496183638018799857080744964643891233.553683488467194339233853874863015\
 683384188799771782342369985551455363359616337979504556822421726439688442342012\
 7818$
 
 t(7) :=  -
 
 782520273130950940627774875109867272632972467666186471049681298447822193631719\
 962723187428236919898967706007960079055845751830930524810709495156506495451752\
 34028819784065.000861224202169752573014341824510568499276$
 
 t(8) :=  -
 
 604754911052939226456034391872992447704633570202965492427589981678301017516836\
 2266770223794822400334715770801668512798250957201315293313641045366287.2924012\
 566952941688303244127821482$
 
 t(9) :=
 
 531671160751248513632888911446446531950380552206448678891567846550022017258961\
 9722996751778766707254670302614416212425287699988557.7585664016381091472487769\
 35273$
 
 t(10) := 0$
 
 t(11) :=
 
 324921599983802460692676060173448137333975531659562884202821463306518012302065\
 7792394925249969620405958323.121107775976570607721068249856007803$
 
 t(12) :=
 
 112484373196395077295180066358650407543584937526839868782854081117429085958646\
 5750905992364267318.561725300705727046801$
 
 t(13) := 0$
 
 t(14) :=
 
 213088786218440868550405688355782398118118974493463188161881742914479812575674\
 7331.586376957247901466071147513$
 
 t(15) := 0$
 
 t(16) :=
 
 20667403333394079253304664685077788651865766621878024093070894329661205.506789\
 38971150886421281$
 
 t(17) :=
 
 906450859895924560495888498222650293648359950333177148016386935844.21941872216\
 689439$
 
 t(18) :=  -
 55242159793777147410364343715233148256990306709665248559781550.9058920657701547$
 
 t(19) :=  -
 16279399009539245745659540870001333108615235753769869094725.055062922133127$
 
 t(20) := 0$
 
 t(21) :=  -
 11553317602807885324795961579138538164936815762289976.814389083214838584$
 
 t(22) := 25291922427566184313788067346969907912398651177922.81162436303916$
 
 t(23) := 0$
 
 t(24) :=  - 95478594383391793803180919232259944913149870.350114670789738753$
 
 t(25) := 0$
 
 t(26) := 0$
 
 t(27) :=  - 789809998825346369987261104083803489684.5516839650229179$
 
 t(28) :=  - 7130030931856561784529910339177479075.47136216872206$
 
 t(29) := 0$
 
 t(30) := 0$
 
 t(31) :=  - 681500048611159977143858036826989.1192143954378274$
 
 t(32) := 23702464396157510272556638243492.5767429429156$
 
 t(33) :=  - 1206706386657301981151550891981.4649828812127$
 
 t(34) := 185244168637809133888016876576.3977649815244$
 
 t(35) := 0$
 
 t(36) := 896148501102143827780865649.056507576163826$
 
 t(37) :=  - 473620382027359942712402247.869064826654$
 
 t(38) :=  - 30539341852964064313180623.7654107381355$
 
 t(39) := 0$
 
 t(40) := 0$
 
 t(41) := 0$
 
 t(42) := 17887743689306242195180.505846212286179$
 
 t(43) := 6429550741850582916459.4000079441379$
 
 t(44) :=  - 2762582195494791384703.150433521969$
 
 t(45) := 0$
 
 t(46) := 0$
 
 t(47) := 0$
 
 t(48) :=  - 2324663733836091895.423179070150919$
 
 t(49) := 0$
 
 t(50) := 0$
 
 t(51) := 124897864676152106.9695564614487$
 
 t(52) := 0$
 
 t(53) :=  - 39318902702708395.6621000656839$
 
 t(54) :=  - 3780415831433575.6084029456651$
 
 t(55) := 0$
 
 t(56) :=  - 283674101024237.5063807196981$
 
 t(57) := 235056197520887.480187107817$
 
 t(58) := 0$
 
 t(59) :=  - 115842930553315.016749655118$
 
 t(60) := 0$
 
 t(61) :=  - 35113131351459.1468425893897$
 
 t(62) := 12227867395983.685302776678$
 
 t(63) := 2630810836497.4682597355395$
 
 t(64) := 2441961456648.624086192557$
 
 t(65) := 0$
 
 t(66) :=  - 445899676621.3883196494486$
 
 t(67) :=  - 349553228850.989603702593$
 
 t(68) :=  - 118447343337.147079034207$
 
 t(69) := 0$
 
 t(70) := 0$
 
 t(71) := 0$
 
 t(72) := 3663423735.03960176611819$
 
 t(73) := 20511637850.77847211184$
 
 t(74) := 3201447309.0065847618363$
 
 t(75) := 0$
 
 t(76) := 2034284831.885585389844$
 
 t(77) := 2595353016.901182996317$
 
 t(78) := 0$
 
 t(79) := 0$
 
 t(80) := 0$
 
 t(81) :=  - 246295392.7878120033387$
 
 t(82) := 0$
 
 t(83) :=  - 31501914.9348508063765$
 
 t(84) := 22519937.938630167419$
 
 t(85) := 0$
 
 t(86) :=  - 20641072.174122690619$
 
 t(87) := 0$
 
 t(88) := 3119828.8744769323185$
 
 t(89) := 0$
 
 t(90) := 0$
 
 t(91) := 0$
 
 t(92) := 0$
 
 t(93) := 3146705.55521874493$
 
 t(94) := 0$
 
 t(95) := 0$
 
 t(96) := 96306.37431131007617$
 
 t(97) := 0$
 
 t(98) := 0$
 
 t(99) :=  - 383539.42933857271$
 
 t(100) := 0$
 
 t(101) := 306468.661337514042$
 
 t(102) :=  - 230767.453571350339$
 
 t(103) := 0$
 
 t(104) := 0$
 
 t(105) := 0$
 
 t(106) :=  - 70972.2393080120499$
 
 t(107) := 0$
 
 t(108) := 33590.209434412711$
 
 t(109) :=  - 2205.3724639855506$
 
 t(110) := 0$
 
 t(111) := 12166.12897397441$
 
 t(112) :=  - 12590.018778048684$
 
 t(113) := 0$
 
 t(114) := 6504.6246847185273$
 
 t(115) := 0$
 
 t(116) := 0$
 
 t(117) := 0$
 
 t(118) := 2371.783733219912$
 
 t(119) := 521.1894471713266$
 
 t(120) := 0$
 
 t(121) :=  - 2772.23360602359$
 
 t(122) := 727.387074013241$
 
 t(123) := 0$
 
 t(124) :=  - 783.754878550522$
 
 t(125) := 0$
 
 t(126) := 140.209293312099$
 
 t(127) := 1081.46194554012$
 
 t(128) :=  - 407.9658015343132$
 
 t(129) := 933.687658234734$
 
 t(130) := 0$
 
 t(131) := 0$
 
 t(132) := 33.3669457466735$
 
 t(133) := 225.82846750291$
 
 t(134) := 236.675651959201$
 
 t(135) := 0$
 
 t(136) := 75.4787604700645$
 
 t(137) :=  - 186.36789146153$
 
 t(138) := 0$
 
 t(139) := 0$
 
 t(140) := 0$
 
 t(141) := 0$
 
 t(142) := 0$
 
 t(143) := 0$
 
 t(144) :=  - 2.72167989843604$
 
 t(145) := 0$
 
 t(146) := 47.1121121926293$
 
 t(147) := 0$
 
 t(148) :=  - 39.180862184586$
 
 t(149) :=  - 29.898783160802$
 
 t(150) := 0$
 
 t(151) := 0$
 
 t(152) := 8.553355865012$
 
 t(153) := 6.90190020446$
 
 t(154) := 2.4270745418037$
 
 t(155) := 0$
 
 t(156) := 0$
 
 t(157) := 0$
 
 t(158) := 0$
 
 t(159) := 5.1639892210306$
 
 t(160) := 0$
 
 t(161) := 0$
 
 t(162) :=  - 3.0315068434988$
 
 t(163) := 0$
 
 t(164) := 0$
 
 t(165) := 0$
 
 t(166) :=  - 2.8709093900987$
 
 t(167) := 0$
 
 t(168) := 2.4261967611585$
 
 t(169) := 0$
 
 t(170) := 0$
 
 t(171) := 2.0180306676496$
 
 t(172) := 2.7826165778986$
 
 t(173) := 0$
 
 t(174) := 0$
 
 t(175) := 0$
 
 t(176) :=  - 0.73051301766582$
 
 t(177) :=  - 0.29688077130683$
 
 t(178) := 0$
 
 t(179) := 0$
 
 t(180) := 0$
 
 t(181) := 0$
 
 t(182) := 0$
 
 t(183) := 0.98130095750553$
 
 t(184) := 0$
 
 t(185) := 0$
 
 t(186) := 0.27000839085032$
 
 t(187) := 1.1102436539792$
 
 t(188) := 0$
 
 t(189) := 0.41638953115812$
 
 t(190) := 0$
 
 t(191) := 0.53495973448487$
 
 t(192) :=  - 0.12015047704749$
 
 t(193) :=  - 0.41988633092102$
 
 t(194) := 0$
 
 t(195) := 0$
 
 t(196) := 0$
 
 t(197) := 0.10222435860785$
 
 t(198) := 0.29136038804454$
 
 t(199) :=  - 0.17220792647499$
 
 t(200) := 0$
 
 t(201) :=  - 0.17707571548646$
 
 t(202) := 0.072166712944328$
 
 t(203) := 0$
 
 t(204) := 0.17096910659204$
 
 t(205) := 0$
 
 t(206) := 0$
 
 t(207) := 0$
 
 t(208) := 0$
 
 t(209) := 0.025792598279001$
 
 t(210) := 0$
 
 t(211) := 0$
 
 t(212) := 0.13572367635812$
 
 t(213) := 0$
 
 t(214) := 0$
 
 t(215) := 0$
 
 t(216) := 0.034168428975676$
 
 t(217) :=  - 0.0055355590174119$
 
 t(218) := 0.050307742504395$
 
 t(219) := 0.018169248768499$
 
 
 
 comment The partial sum up to the 218-th term is: $
 
 Rademacher(1234567) :=
 
 715490880908500090668830204971571483282076915621981638292949344880079431938962\
 576616856283139608159603320390006454590993465575888598311877101185251260952638\
 104333567814638303161155133579697248237093428793577819038063905854717015597399\
 585216283540966035978582677467955302786975214400242521093365769853143215687615\
 543827820468133192277814647650183125609480408170481114482606332411772207385499\
 476998482655218827261186031705023313307874014273301300297053610135197709439985\
 904984032185374946844419382113860443967309684571387268375077055167683611188310\
 415800797515219481885264654498863641033307739629340318142909047961816717509906\
 614107279872260031591720788939374903950765979735315678089144732619652605808474\
 114613478434026005648501990752745685391025741304143212857264644778423070157425\
 057048329987584461419238739968247601641309036259438588634451037030651237617671\
 625440399708457144457034822188531540046055848922280658862841197257208456619585\
 063106990471776117839733933821863731203738887642219959698259472920648551500949\
 773500258044342763418353205860697591237423169787525187299963229569479391673799\
 046398119149345658525737875496420744725360387951929243107396970737312263130169\
 8197398456788392768874673519277489020839294797279106528252500.0027065859747$
 
 comment The partial sum up to the 217-th term is: $
 
 Rademacher(1234567) :=
 
 715490880908500090668830204971571483282076915621981638292949344880079431938962\
 576616856283139608159603320390006454590993465575888598311877101185251260952638\
 104333567814638303161155133579697248237093428793577819038063905854717015597399\
 585216283540966035978582677467955302786975214400242521093365769853143215687615\
 543827820468133192277814647650183125609480408170481114482606332411772207385499\
 476998482655218827261186031705023313307874014273301300297053610135197709439985\
 904984032185374946844419382113860443967309684571387268375077055167683611188310\
 415800797515219481885264654498863641033307739629340318142909047961816717509906\
 614107279872260031591720788939374903950765979735315678089144732619652605808474\
 114613478434026005648501990752745685391025741304143212857264644778423070157425\
 057048329987584461419238739968247601641309036259438588634451037030651237617671\
 625440399708457144457034822188531540046055848922280658862841197257208456619585\
 063106990471776117839733933821863731203738887642219959698259472920648551500949\
 773500258044342763418353205860697591237423169787525187299963229569479391673799\
 046398119149345658525737875496420744725360387951929243107396970737312263130169\
 8197398456788392768874673519277489020839294797279106528252499.9523988434703$
 
 comment The partial sum up to the 216-th term is: $
 
 Rademacher(1234567) :=
 
 715490880908500090668830204971571483282076915621981638292949344880079431938962\
 576616856283139608159603320390006454590993465575888598311877101185251260952638\
 104333567814638303161155133579697248237093428793577819038063905854717015597399\
 585216283540966035978582677467955302786975214400242521093365769853143215687615\
 543827820468133192277814647650183125609480408170481114482606332411772207385499\
 476998482655218827261186031705023313307874014273301300297053610135197709439985\
 904984032185374946844419382113860443967309684571387268375077055167683611188310\
 415800797515219481885264654498863641033307739629340318142909047961816717509906\
 614107279872260031591720788939374903950765979735315678089144732619652605808474\
 114613478434026005648501990752745685391025741304143212857264644778423070157425\
 057048329987584461419238739968247601641309036259438588634451037030651237617671\
 625440399708457144457034822188531540046055848922280658862841197257208456619585\
 063106990471776117839733933821863731203738887642219959698259472920648551500949\
 773500258044342763418353205860697591237423169787525187299963229569479391673799\
 046398119149345658525737875496420744725360387951929243107396970737312263130169\
 8197398456788392768874673519277489020839294797279106528252499.9579344024877$
 
 comment The partial sum up to the 219-th term is: $
 
 Rademacher(1234567) :=
 
 715490880908500090668830204971571483282076915621981638292949344880079431938962\
 576616856283139608159603320390006454590993465575888598311877101185251260952638\
 104333567814638303161155133579697248237093428793577819038063905854717015597399\
 585216283540966035978582677467955302786975214400242521093365769853143215687615\
 543827820468133192277814647650183125609480408170481114482606332411772207385499\
 476998482655218827261186031705023313307874014273301300297053610135197709439985\
 904984032185374946844419382113860443967309684571387268375077055167683611188310\
 415800797515219481885264654498863641033307739629340318142909047961816717509906\
 614107279872260031591720788939374903950765979735315678089144732619652605808474\
 114613478434026005648501990752745685391025741304143212857264644778423070157425\
 057048329987584461419238739968247601641309036259438588634451037030651237617671\
 625440399708457144457034822188531540046055848922280658862841197257208456619585\
 063106990471776117839733933821863731203738887642219959698259472920648551500949\
 773500258044342763418353205860697591237423169787525187299963229569479391673799\
 046398119149345658525737875496420744725360387951929243107396970737312263130169\
 8197398456788392768874673519277489020839294797279106528252500.0208758347418$
 
 comment with the first 1-th fractional digits := 0$
 
 comment Thus, one concludes that the exact value of p(1234567) is: $
 
 p(1234567) :=
 715490880908500090668830204971571483282076915621981638292949344880079431938962\
 576616856283139608159603320390006454590993465575888598311877101185251260952638\
 104333567814638303161155133579697248237093428793577819038063905854717015597399\
 585216283540966035978582677467955302786975214400242521093365769853143215687615\
 543827820468133192277814647650183125609480408170481114482606332411772207385499\
 476998482655218827261186031705023313307874014273301300297053610135197709439985\
 904984032185374946844419382113860443967309684571387268375077055167683611188310\
 415800797515219481885264654498863641033307739629340318142909047961816717509906\
 614107279872260031591720788939374903950765979735315678089144732619652605808474\
 114613478434026005648501990752745685391025741304143212857264644778423070157425\
 057048329987584461419238739968247601641309036259438588634451037030651237617671\
 625440399708457144457034822188531540046055848922280658862841197257208456619585\
 063106990471776117839733933821863731203738887642219959698259472920648551500949\
 773500258044342763418353205860697591237423169787525187299963229569479391673799\
 046398119149345658525737875496420744725360387951929243107396970737312263130169\
 8197398456788392768874673519277489020839294797279106528252500$
 
 comment The following is the timex report of the system in seconds:
 real       36.34
 user       35.74
 sys         0.26
 $
 
 |